Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

نویسندگان

  • Shuai Chang
  • Liqun Li
  • Li Lu
  • Jerry Ying Hsi Fuh
چکیده

The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Porous and Dense Bulk Samples in Calcium Magnesium Silicate Systems using Steel Slag and Different Additive by Conventional Sintering Method (TECHNICAL NOTE)

In order to obtain the bulk brick like samples, the mixture of steel slag, and sintering aid additive (like dolomite, glass, perlite, borax and phosphate sodium) were sintered at 1100°C for 2 minute. The flat and bloated surface appearances were obtained. The bulk densities of final sintered composites were from 1.3 to 2.41 g/cm3 and total porosities were from 15 to 40%. The bending strengths v...

متن کامل

Modeling of selective laser sintering/selective laser melting

Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Mode...

متن کامل

Selective Laser Sintering and Freeze Extrusion Fabrication of Scaffolds for Bone Repair Using 13-93 Bioactive Glass: a Comparison

13-93 glass is a third-generation bioactive material which accelerates the bone’s natural ability to heal by itself through bonding with surrounding tissues. It is an important requirement for synthetic scaffolds to maintain their bioactivity and mechanical strength with a porous internal architecture comparable to that of a human bone. Additive manufacturing technologies provide a better contr...

متن کامل

New-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing

Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...

متن کامل

The Effect of a Small Amount SiO2 on Sintering Kinetics of Tetragonal Zirconia Nanopowders

In the present paper the sintering behavior of 3 mol% yttria-stabilized zirconia (3Y-TZP) with and without small amount (0.2 wt %) of SiO2 additive was investigated. It has been studied the silica impact which was added in two ways (co-precipitation and mechanical mixing) on sintering kinetics of 3Y-TZP nanopowders at the initial sintering stage. It was found the silica additive leads to the ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017